# INTRODUCTION TO THE *t* STATISTIC

Frances Chumney, PhD

### *Z***-SCORES REVISITED**

- Basic Assumptions
  - M approximates μ
  - \*  $\sigma_M$  estimates how well *M* approximates  $\mu$
  - ✤ Quantifies inferences made about the population
- > The Problem with z-scores
  - \* Requires knowledge of  $\sigma$

### **ESTIMATE OF STANDARD ERROR**

estimate of the standard error when the population standard deviation is unknown; estimate of standard difference between M and  $\mu$ 

$$s_M = \sqrt{\frac{s^2}{n}}$$

### **DEGREES OF FREEDOM**

number of scores in a sample that are independent and free to vary

- > Larger  $df \rightarrow$  better  $s^2$  represents  $\sigma^2$
- $\succ$  df associated with  $s^2$  describes how well t represents z
  - ↔ Larger  $df \rightarrow$  better *t* statistic approximates *z* statistic

### t STATISTIC

statistic used to test hypotheses about unknown population  $\mu$  when the value of  $\sigma$  is unknown

May be positive or negative (absolute value = magnitude)
No upper- or lower- bound values

$$z = \frac{M-\mu}{\sigma_M} = \frac{M-\mu}{\sqrt{\frac{\sigma^2}{n}}} \qquad \qquad t = \frac{M-\mu}{s_M} = \frac{M-\mu}{\sqrt{\frac{s^2}{n}}}$$

### t distribution



**INTRODUCTION TO THE T STATISTIC** 

### *t* **DISTRIBUTION: PROPORTIONS**

|                                                                                                 | 0.25  | Pro<br>0.10 | oportion in<br>0.05 | One Tail<br>0.025 | 0.01   | 0.005  |
|-------------------------------------------------------------------------------------------------|-------|-------------|---------------------|-------------------|--------|--------|
| Proportion in Two Tails Combined       df     0.50     0.20     0.10     0.05     0.02     0.01 |       |             |                     |                   |        | 0.01   |
| 1                                                                                               | 1.000 | 3.078       | 6.314               | 12.706            | 31.821 | 63.657 |
| 2                                                                                               | 0.816 | 1.886       | 2.920               | 4.303             | 6.965  | 9.925  |
| 3                                                                                               | 0.765 | 1.638       | 2.353               | 3.182             | 4.541  | 5.841  |
| 4                                                                                               | 0.741 | 1.533       | 2.132               | 2.776             | 3.747  | 4.604  |
| 5                                                                                               | 0.727 | 1.476       | 2.015               | 2.571             | 3.365  | 4.032  |
| 6                                                                                               | 0.718 | 1.440       | 1.943               | 2.447             | 3.143  | 3.707  |

#### **INTRODUCTION TO THE T STATISTIC**

### **HYPOTHESIS TESTING WITH** *t*

#### Assumptions

- Values/Observations in sample are independent
- Sampled population is normal
- Process of Hypothesis Testing
  - ↔ Start with population with unknown  $\mu$  and  $\sigma^2$
  - ✤ Goal: Sample to determine effect (if any) of treatment
  - $H_0$ : the treatment had no effect
  - \*  $s^2$  and  $\sigma_s$  computed from sample data

$$t = \frac{M - \mu}{s_M}$$

INTRODUCTION TO THE T STATISTIC

### **HYPOTHESIS TESTING WITH** *t*

- $\succ$  Step 1: State H<sub>0</sub> and H<sub>1</sub>
- Step 2: Locate critical region
  - Compute *df* and refer to *t* distribution table
- Step 3: Calculate Test Statistic
  - ✤ Calculate sample  $s^2$
  - $\diamond$  Compute  $s_M$
  - Compute t statistic
- > Step 4: Make decision regarding  $H_0$

$$s^2 = \frac{SS}{df}$$
  $s_M = \sqrt{\frac{s^2}{n}}$   $t = \frac{M-\mu}{s_M}$ 

### **EFFECT SIZES**

#### Cohen's d

 $\rightarrow r^2$ 

$$d = \frac{M - \mu}{s}$$

$$r^2 = \frac{t^2}{t^2 + df}$$

•  $r^2 = 0.01 - \text{Small Effect}$ 

- $r^2 = 0.09 \text{Medium Effect}$
- $r^2 = 0.25 \text{Large Effect}$

## INFLUENCE OF n AND s ON $s_M$

- > Larger  $s_M \rightarrow$  smaller values of t (closer to zero)
- > Any factor that increases  $s_M$  will reduce likelihood of rejecting  $H_0$

#### ➤ Large Variance

- ✤ Difference less likely to be significant
- Scores widely scattered, so harder to see consistent patterns in data
- Reduced effect size

#### Large Sample

- Difference more likely to be significant
- $\diamond$  smaller  $s_M$