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Principal components analysis and factor analysis are common methods used to analyze 

groups of variables for the purpose of reducing them into subsets represented by latent constructs 

(Bartholomew, 1984; Grimm & Yarnold, 1995). Even though PCA shares some important 

characteristics with factor analytic methods such as exploratory factor analysis (EFA) and 

confirmatory factor analysis (CFA), the similarities between the two types of methods are 

superficial. The most important distinction to make is that PCA is a descriptive method, whereas 

EFA and CFA are modeling techniques (Unkel & Trendafilov, 2010). Together, PCA, EFA, and 

CFA are used to analyze multiple variables for the purposes of data reduction, scale construction 

and improvement, and evaluation of validity and psychometric utility (Brown, 2006; Brown, 

Chorpita, & Barlow, 1998). This paper provides a brief review of PCA, EFA, and CFA, 

describes the appropriate problems to which each might be correctly applied, and discusses the 

similarities and differences between these three methods. 

PRINCIPAL COMPONENTS ANALYSIS 

 Principal components analysis (PCA; Goodall, 1954) is a method for explaining the 

maximum amount of variance among a set of items by creating linear functions of those items 

for the purpose of identifying the smallest number of linear functions necessary to explain the 

total variance observed for the item set in the correlation matrix (Grimm & Yarnold, 1995). Put 

another way, PCA identifies the smallest number of factors or components necessary to explain 

as much (or all) of the variance as possible. In this context, a factor or component is a set of 

variables that, when combined in a linear fashion, explains some portion of the observed 

variance (Mulaik, 1990). The foundational assumption of PCA is that the total variance of each 
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variable or item can be explained by summing the true variance and error variance which 

characterizes that item (Hotelling, 1933). 

When identifying factors or components, PCA first identifies the linear combination of 

variables that explains the largest proportion of total variance, and that factor is known as the 

first component. For a component with 6 indicators, the linear function takes the form: 

𝐶 = 𝑙1𝑖1 + 𝑙2𝑖2 + 𝑙3𝑖3 + 𝑙4𝑖4 + 𝑙5𝑖5 + 𝑙6𝑖6 

where C is a component or outcome of the linear function, l is an item loading, and i is an item. 

The second component is the linear combination of variables that explains the next largest 

proportion of variance that is not explained by the first component, and so on (Grimm & Yarnold, 

1995). In PCA, each component is called an eigenvector; the portion of the total variance 

explained by each eigenvector is its eigenvalue (Wold, 1987). However, because it is possible to 

identify a large number of components, criteria have been developed for evaluating whether an 

item should be considered part of a component and whether a component should be retained as 

important for explaining variance. 

 Determination of the number of components to extract from a PCA may be completed a 

priori or by following a decision rule after the results of the analysis are produced. A priori 

decision rules that might be established for this task are the percentage of variance criterion and 

the a priori criterion. The percentage of variance criterion dictates that extracted factors are 

retained from an analysis until those factors combine to account for a specific percentage of the 

total variance (Grimm & Yarnold, 1995). The a priori criterion (Hair, Anderson, Tatham, & 

Black, 1992) is the specification before an analysis is conducted of a certain number of 

components that should be extracted. Ideally, the a priori criterion process is guided by theory or 

previous research. Decision rules that can be applied after an analysis is complete are Kaiser’s 
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stopping rule (Kaiser, 1960) and the scree test. Kaiser’s rule simply means that all eigenvectors 

with an eigenvalue of 1.0 or greater are extracted from the data and retained as part of the 

solution. The value of 1.0 is not arbitrary in this context; 1.0 is the variance of a standardized 

variable. The scree test (Cattell, 1966) is dependent on a scree plot, or graphical display of the 

eigenvalues for successive eigenvectors. In most cases, the scree plot will visually depict a quick 

decline in eigenvalues followed by a series of less dramatic decreases. The eigenvector which 

represents the transition between the two trends (aka, the “elbow”) and all successive 

eigenvectors are dropped (Gorsuch, 1983).  

 In addition to deciding how many eigenvectors to extract, the researcher must decide how 

many/which items to include on each eigenvector or component. This decision is generally 

determined by the factor loading coefficient which describes the relationship (correlation) 

between each item and the eigenvector (Wold, 1987). Loadings may be positive or negative, and 

can have absolute values that range from 0.00 to 1.00. The factor loading coefficient is 

interpreted in the same manner as a correlation coefficient; the coefficient can also be used to 

calculate r
2
 for the item to determine the portion of variance that is shared by the item and the 

component. When evaluating factor loading coefficients, researchers often rely on a general rule 

of thumb that the absolute value of a factor loading should be ≥ .30 (Grimm & Yarnold, 1995) in 

order to be retained as an item on the component and included in interpretation of the latent 

variable represented by that component. However, this rule of thumb may not be a good practice 

in all instances. Because it is known that the level of significance associated with a correlation 

coefficient is influenced by the sample size, and because the factor loading coefficient is a 

correlation, it follows that the point at which a factor loading implies a significant relationship 

between the item and component is dependent upon sample size. Thus, some researchers have 
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argued that the absolute value used for determining a relationship between an item and 

component should be at least as large as the value of the correlation necessary for p < .05 Type I 

error rate, given the sample size (Stevens, 1986). Compared to liberal criterions (close to 0.0), a 

more conservative criterion is important because it helps control the overall Type I error rate 

associated with the analysis. 

 In addition to evaluating the strength of the relationship between an item and its 

component, it is necessary to consider the need to interpret the latent variables represented by the 

components and eigenvectors. The relationship of items that allows for the most straightforward 

and interpretable solution is known as simple structure (Thurstone, 1947), and occurs when each 

variable has a loading close to zero on all but one eigenvector, all variables have loadings close 

to zero on most eigenvectors, and all items that load on a eigenvector have loadings closer to 1 

than 0. If a simple structure is not identified, it is possible to rotate the eigenvectors to achieve 

simple structure and increase the interpretability of the factors. Eigenvectors can be rotated using 

orthogonal (uncorrelated, e.g., varimax, quartimax) or oblique (correlated, e.g., promax) methods 

(Osborne & Costello, 2009). In rotation, orthogonal and oblique refer to the relationships 

between scores on the various eigenvectors. Rotation is a mathematical manipulation meant to 

minimize the factor loadings close to 0 and maximize the loadings that are close to 1.0 for the 

purpose of simplifying interpretability of factors without changing the solution (Brown, 2006). 

Though useful, the concept of rotation raises the question of factor indeterminacy, a common 

criticism of PCA. Factor indeterminacy (Brown, 2006; Maraun, 1996; Steiger, 1979) means there 

is not a single correct solution to solving the puzzle of the relationships between the items. 
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Applications of PCA 

The purpose of PCA is to identify underlying dimensions that explain response patterns 

(Wold, 1987). Thus, PCA is appropriate for use when applied to a set of responses such as those 

obtained from a questionnaire. In addition to simply identifying factors, PCA is useful for 

examining the number of components, identifying which items make up each component and 

how strongly they relate to the component, and investigating the strength of the relationship 

between components (Grimm & Yarnold, 1995). In these ways, PCA is most useful when used 

as a descriptive tool for the process of measure development by contributing to the researcher’s 

understanding of the strengths and weaknesses of the measure in terms of content validity and 

structural/factorial validity (Aladwani & Palvia, 2002). 

EXPLORATORY FACTOR ANALYSIS 

 Exploratory factor analysis (EFA; Bartholomew, 1984) is a data-driven, exploratory 

method for determining the number of common factors underlying a response set as well as the 

relationship between individual items and those common factors (Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Kline, 2011). The purpose of EFA is to evaluate the 

dimensionality of a response set by identifying interpretable factors necessary to explain the 

relationships between responses. In EFA, the observed variables are called indicators and the 

extracted factors are assumed to be the cause for the observed responses (Brown, 2006). EFA is 

based on the common factor model (Jöreskog, 1969; Thurstone, 1947) and is represented by the 

equation: 

𝑦𝑗 = 𝜆𝑗1𝜂1 + 𝜆𝑗2𝜂2 +⋯+ 𝜆𝑗𝑚𝜂𝑚 + 𝜀𝑗, 

where y is an indicator, λ is a factor loading, η is a factor, and ε is the unique variance of y 

(Brown, 2006). Thus, the foundational assumption of EFA is that the total variance of each 
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variable or item can be explained by summing the common variance, the specific variance, and 

the error variance associated with that item (Grimm & Yarnold, 1995). In this context, common 

variance is the variance of an item that is shared with other items, specific variance is the 

variance of an item that does not correlate with other items, and error variance is the portion of 

the total variance attributed to random variation.   

 EFA is an iterative estimation process during which the correlation matrix of the 

observed data is analyzed using PCA, communalities are estimated for the factors extracted 

during the PCA, the communalities replace the item variance values on the diagonal of the 

correlation matrix, and the process repeats by analyzing the adjusted matrix using PCA. This 

process continues to repeat until the changes in the communalities derived from each PCA is 

minimal (Grimm & Yarnold, 1995). The communality of a variable is the proportion of the 

variable that is not attributed to the variable’s uniqueness, which is conceptualized as the sum of 

the specific variance and error variance (Russell, 2002). Alternatively, the communality of a 

variable can be understood as the sum of the variable’s squared factor loadings across all factors 

(Grimm & Yarnold, 1995). Thus, communality is defined as [1 – (specific variance + error 

variance)], and represents the portion of the variable’s variance account for by the extracted 

factors. Several methods of estimation are available for extracting factors through EFA, 

including maximum likelihood (ML), principal factors (PF), and least squares (Unkel & 

Trendafilov, 2010). ML implies an assumption of multivariate normality, which means that item 

responses are normally distributed, as are their linear combinations (Brown, 2006). When this 

assumption is violated, ML frequently leads to unstable estimates. 

  



PCA, EFA, CFA (F. Chumney; September, 2012)     7 

Applications of EFA 

EFA is particularly suited to exploratory analyses aimed to determine the number of 

dimensions underlying a response set, the subjective meaning of each dimension, how the items 

relate to the dimensions, and how the dimensions relate to each other (Mulaik, 1990). EFA is 

also an appropriate tool for the evaluation of a measure’s content validity, as the extracted factors 

represent the dimensions that they measure (Floyd & Widaman, 1995; Grimm & Yarnold, 1995). 

Exploratory Factor Analysis vs. Principal Components Analysis 

In many ways, EFA and PCA are very similar. For instance, both EFA and PCA attempt 

to reduce a set of observed data into components, rotation can be used with both methods to 

achieve simple structure and increase the interpretability of the results, and both methods lack 

strong empirical evidence for cut-off rules to use in the determination of how large an item’s 

loading should be on a factor (or component, as is the case with PCA; Grimm & Yarnold, 1995). 

Despite these similarities, EFA differs from PCA in important ways. EFA differs from 

PCA in its approach to factor extraction, in that EFA analyzes the covariance among variables to 

produce either correlated or uncorrelated factors and PCA analyzes the variance of the variables 

to produce only uncorrelated components (Brown, 2006). Thus, in PCA, extracted components 

are linear combinations of the raw data, and in EFA extracted factors are an explanation of the 

raw data and the relationships within them. EFA is a more elegant analysis, but PCA is often 

viewed favorably because it is simpler, does not converge to improper solutions, allows for a 

direct calculation of participant scores on components, and often leads to the same interpretations 

as EFA (Brown, 2006). EFA also differs from PCA in that PCA is more appropriate when the 

goal is to refine a measure (e.g., identify dimensions that need more items, reduce the total 

number of items for future administrations of a measure), and EFA is more appropriate for 
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reducing the data from multiple variables into fewer variables that are representative of the larger 

variable group (Brown, 2006). Further, because EFA is grounded in common factor theory (and 

includes an error term), it is a more appropriate tool (compared to PCA) when measurement error 

is expected in the data set (Brown, 2006). 

CONFIRMATORY FACTOR ANALYSIS 

 Confirmatory factor analysis (CFA) is a statistical method appropriate for testing whether 

a theoretical model of relationships is consistent with a given set of data (Brown, 2006). Like 

EFA, CFA is grounded in the common factor model (Thurstone, 1947) and assumes the 

relationships observed between variables exist because they are influenced by the same 

underlying construct, which is represented by the latent construct (Brown, 2006). In order to 

estimate a CFA model, the researcher must specify the hypothesized characteristics of factor 

loadings, the relationships between factors, and measurement error (Grimm & Yarnold, 1995). 

CFA is applicable to instances of single samples as well as multiple samples, and enables the 

testing of hypotheses related to the consistency of relationships across groups (Mellenbergh, 

1989; Meredith, 1993; Sörbom, 1974). 

 Put simply, CFA works by evaluating how well the researcher-specified relationships 

recreate the covariance matrix of the observed data (Brown, 2006). Though several methods are 

available for the purpose of estimating CFA models, the most common estimation method 

applied with CFA is ML (Babakus, Ferguson, & Jöreskog, 1987; Brown, 2006), due in part to 

the fact that ML allows for an empirical, statistical evaluation of model fit to the data. The 

overall model fit index for a CFA estimated with ML is χ
2
, for which a p value can be obtained. 

The hypothesis being tested when a CFA model is fit to data is that there is no difference 

between the model and the data. Thus, a significant p value indicates that the specified model 
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does not reproduce the observed data (Mulaik, James, Van Alstine, Bennet, Lind, & Stilwell, 

1989). A disadvantage associated with the χ
2
 statistic is that it is sensitive to sample size and will 

sometimes yield with a significant p value due to sample size (e.g., Alwin & Jackson, 1980; 

Bentler, 1990). Fortunately, the χ
2
 is not the only statistic available for the evaluation of CFA 

model fit. Other model fit indices appropriate for CFA include RMSEA (Steiger & Lind, 1980), 

the Tucker-Lewis coefficient (TLC; Tucker & Lewis, 1973), and the normed comparative fit 

index (CFI; Bentler, 1990). The specifics of these fit statistics is beyond the scope of this paper; 

they are mentioned here only as examples. Fit indices such as these are typically referred to as 

measures of comparative fit because they quantify the degree to which the specific model fits the 

data better than the typical null model (no common factors, item covariance explained by 

sampling error alone) fits the data (Tanaka, 1993). Two other important topics relevant to CFA 

but beyond the scope of this paper include model identification and model comparison.  

Applications of CFA 

CFA is particularly suited to testing hypotheses about the relationships between 

indicators (observed data) and factors, and the relationships between factors (Brown, 2006). In 

addition to evaluating whether a specific model fits the data, CFA can be used to compare the fit 

of multiple models to determine which provides the best fit to the data (Schreiber, Nora, Stage, 

Barlow, & King, 2006), or to compare the fit of a model to data from multiple groups (Jöreskog, 

1971). With regard to instrument development, CFA is often used as part of the process for 

evaluating content, convergent, and discriminant validity (Cole, 1987). During the past decade, 

the applications of CFA have expanded to include analysis of multi-trait multi-method data 

(MTMM; Bagozi & Yi, 1990; Wothke, 1996), which consists of using different models for 

different factors. 
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Confirmatory Factor Analysis vs. Exploratory Factor Analysis & Principal Components 

Like PCA and EFA, CFA is often used for instrument development (e.g., construct 

validation; Judd, Jessor, & Donovan, 1986). Because CFA and EFA are based on the same 

model, they are more similar than are CFA and PCA, and it is likely that the results of EFAs are 

more likely to generalize to the CFA framework than are results of PCAs (Floyd & Widaman, 

1995). The important difference between CFA and EFA is that EFA is a tool for developing 

theories and CFA is a tool for theory testing (Bollen, 1989). A way in ≠EFA assumes they are 

independent (Grimm & Yarnold, 1995). 

CFA is distinct from PCA and EFA in that it constitutes a method of hypothesis testing 

applicable when the focus of the hypothesis is the structural relationship among variables. More 

specifically, CFA allows the researcher to specify how items relate to factors and how factors 

relate to each other (Bollen, 1989; Grimm & Yarnold, 1995). This is very different from 

exploratory methods like PCA and EFA, with which a priori hypotheses cannot be tested. Thus, 

PCA and EFA are methods for theory development and CFA is better suited to theory testing. 

CONCLUSION 

 On the surface, PCA, EFA, and CFA appear to be similar methods for reaching the same 

goal. This is particularly true of PCA and EFA given that both are exploratory procedures which 

often yield the same results. However, Mulaik (1990) warns against being satisfied with methods 

that merely approximate outcomes, as PCA does. The primary differences between these three 

methods have been outlined here and should not be overlooked. Though it is true that these 

methods do have some characteristics in common, they constitute three distinct analyses that can 

be used together to strengthen research instruments and outcomes. 
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