

Frances Chumney, PhD

CONTENT OUTLINE

- > Overview of z-Scores
- Probability & Normal Distribution
- Distribution of Sample Means

OVERVIEW OF Z-SCORES

Z-SCORES

OVERVIEW OF z-SCORES

- Student A earned a score of 76 on an exam
 - How many points were possible?
 - 76 out of 80? Not bad!
 - 76 out of 100? Not so great!
 - How does a score of 76 compare to other students?
 - \circ 76 the lowest score in the class?
 - \odot Anyone earn a score higher than 76?

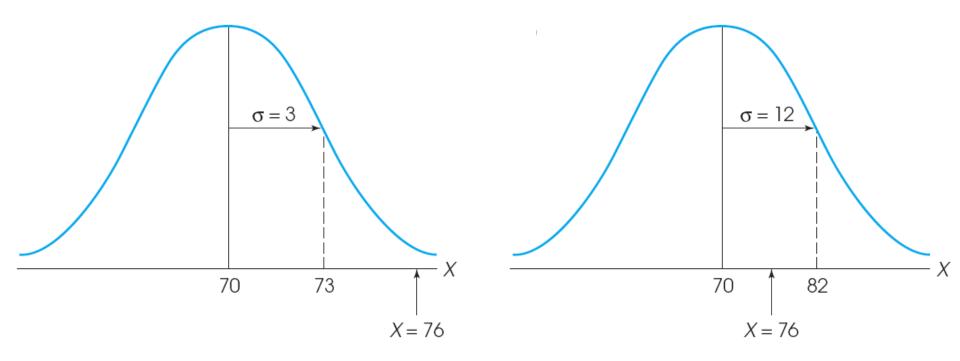
OVERVIEW OF z-SCORES

standardized value that specifies the exact location of an X value within a distribution by describing its distance from the mean in terms of standard deviation units

Standard Deviation Unit

- Standardized value
- ✤ 1 SD unit = value of 1 SD before standardization

OVERVIEW OF z-SCORES



Z-SCORES

SCORE LOCATION

 ± 1.0

+2.0

 \succ *z*-Scores describe the exact location of a score within a distribution

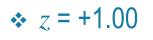
- ✤ Sign: Whether score is above (+) or below (-) the mean
- Number: Distance between score and mean in standard deviation units

-2.0

-1.0

z = 0

Example

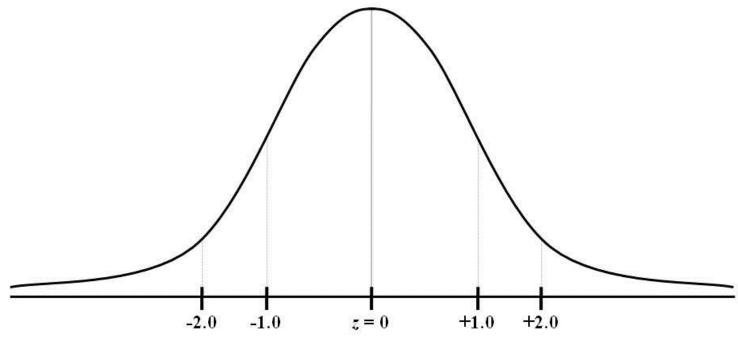


 $\,\circ\,$ Number: 1.00 SD units from the mean

SCORE LOCATION

➢ Example

- ✤ z = .50
 - $\,\circ\,$ Sign: negative (-) so score is below the mean
 - $\,\circ\,$ Number: .50 SD units from the mean



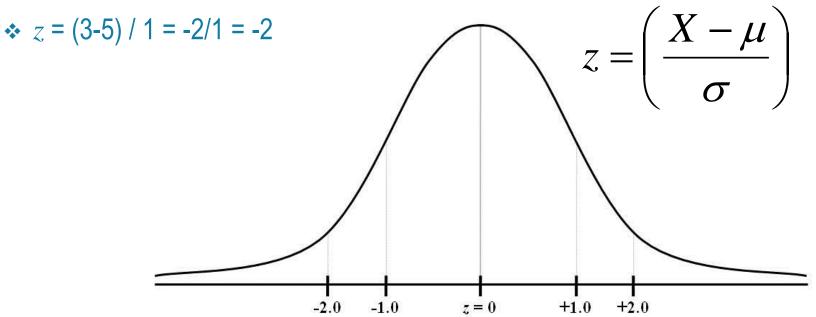
 \succ Transform raw score (X value) to z-Score

$$z = \left(\frac{X - \mu}{\sigma}\right) = \left(\frac{X - M}{s}\right)$$

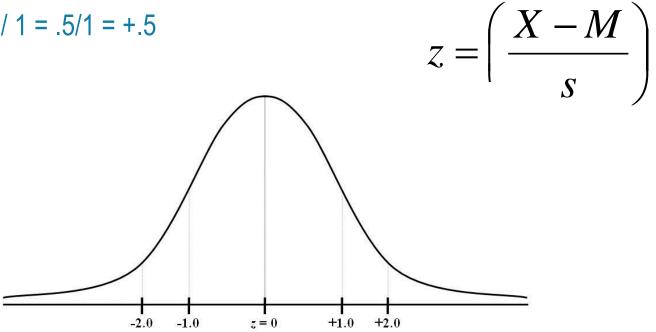
- Numerator = Deviation Score
- Denominator = Standard Deviation

Example

- Population A has μ = 5 and σ = 1
- Find *z*-Score for X = 3



- ↔ Sample B has M = 5 and s = 1
- Find *z*-Score for X = 5.5



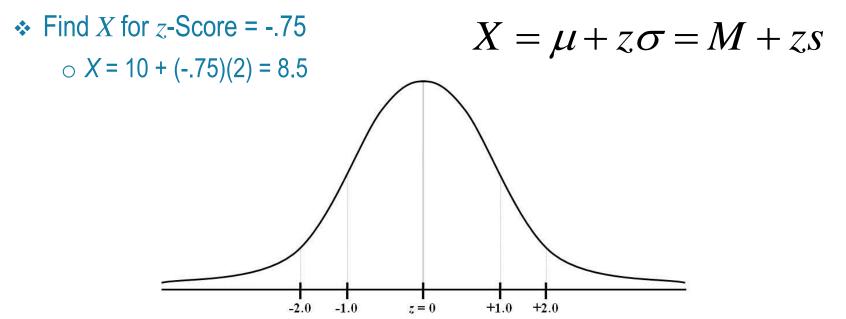
 \succ Transform *z*-Score to *X* value (raw score)

$$X = \mu + z\sigma = M + zs$$

- ✤ 4 pieces of information:
 - \circ *X* = raw score
 - $\circ \mu$ or *M* = population/sample mean
 - \circ *z* = *z*-Score
 - $\circ \sigma$ or *s* = population/sample standard deviation

Example

- Person A from Sample Y has a z-Score of -.75
- $\mu = 10, \sigma = 2$



RELATIONSHIPS

 \succ *z*-Scores establish relationships between score, mean, standard deviation

- Example
 - \circ Population: μ = 65 and *X* = 59 corresponds to *z* = -2.00
 - \odot Subtract 65 from 59 and find deviation score of six points corresponds to z value of -2.00
 - \circ (X μ) / z = σ
- Example
 - \circ Population: σ = 4 and *X* = 33 corresponds to *z* = +1.50
 - \circ Multiply σ by z to find deviation score (4 * 1.5 = 6)
 - \circ Add/Subtract deviation score from *X* to find μ (33 6 = 27)

DISTRIBUTION TRANSFORMATIONS

Standardized Distribution

distribution composed of scores that have been transformed to create predetermined values for μ and σ; distributions used to make dissimilar distributions comparable

Properties/Characteristics

- Same shape as original distribution scores are renamed, but location in distribution remains same
- ✤ Mean will always equal zero (0)
- Standard deviation will always equal one (1)

DISTRIBUTION TRANSFORMATIONS

> How-To

✤ Transform all X values into z-Scores \Rightarrow z-Score Distribution

> Advantage

- ✤ Possible to compare scores or individuals from different distributions ⇒ Results more generalizable
 - o z-Score distributions have equal means (0) and standard deviations (1)

STANDARDIZED DISTRIBUTIONS

- \succ *z*-Score distributions include positive and negative numbers
- \blacktriangleright Standardize to distribution with predetermined μ and σ to avoid negative values
- Procedure
 - ✤ Transform raw scores to z-scores
 - ✤ Transform *z*-scores into new *X* values with desired µ and σ values

STANDARDIZED DISTRIBUTIONS

➢ Example

- Population distribution with μ = 57 and σ = 14
- ↔ Transform distribution to have μ = 50 and σ = 10
- Calculate new X values for raw scores of X = 64 and X = 43
- ✤ Step 1 (of 2)
 - Transform raw scores to *z*-scores

•
$$z = (X - \mu) / \sigma$$

• $z = (64 - 57) / 14 = (7 / 14) = .50$
• $z = (43 - 57) / 14 = (-14 / 14) = -1.0$

STANDARDIZED DISTRIBUTIONS

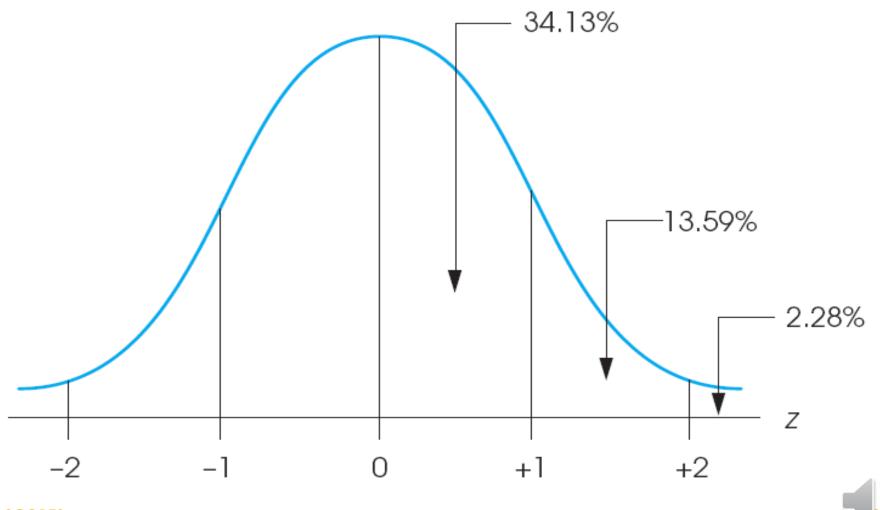
- Example (continued)
 - Step 2 (of 2)
 - \circ Transform to new X values
 - z = .50 corresponds to a score $\frac{1}{2}$ of a standard deviation above the mean
 - In new distribution, z = .50 corresponds to score 5 points above mean (X = 55)
 - In new distribution, z = -1.00 corresponds to score 10 points below mean (X = 40)

using the unit normal table to find proportions

PROBABILITY & NORMAL DISTRIBUTION

Z-SCORES

PROBABILITY & NORMAL DISTRIBUTION



Z-SCORES

μ

21

PROBABILITY & NORMAL DISTRIBUTION

➢ Example

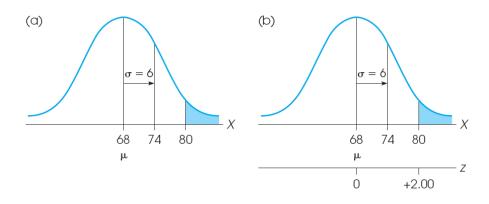
- - Translate into a proportion question: Out of all possible adult heights, what proportion consists of values greater than 80"?
 - $\,\circ\,$ The set of "all possible adult heights" is the population distribution
 - $_{\odot}$ We are interested in all heights greater than 80", so we shade in the area of the graph to the right of where 80" falls on the distribution

PROBABILITY & NORMAL DISTRIBUTION

- Example (continued)
 - ✤ Transform X = 80 to a *z*-score

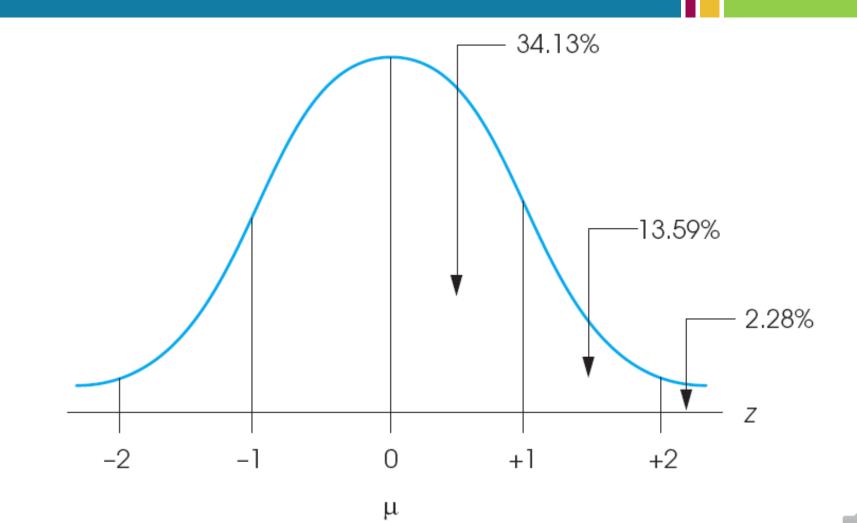
 $z = (X - \mu) / \sigma = (80 - 68) / 6 = 12 / 6 = 2.00$

- Express the proportion we are trying to find in terms of the *z*-score: *p*(*z* > 2.00) = ?
- ↔ By Figure 6.4, p(X > 80) = p(z > +2.00) = 2.28%



Z-SCORES

UNIT NORMAL TABLE



UNIT NORMAL TABLE

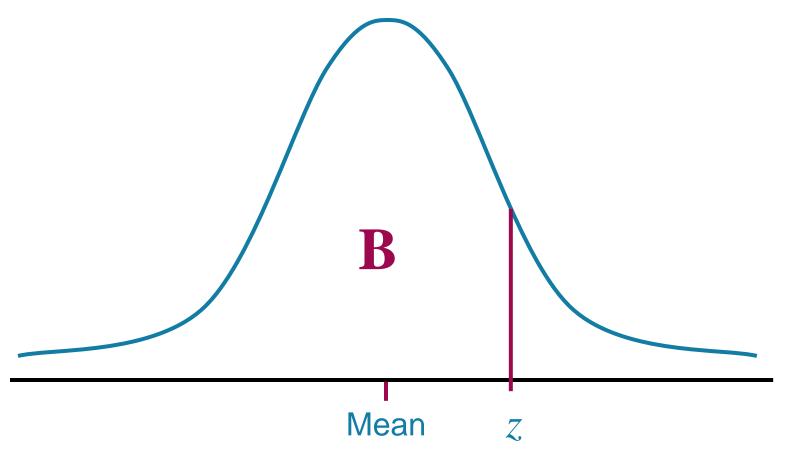
(A) Z	(B) Proportion in body	(C) Proportion in tail	(D) Proportion between mean and z	В
0.00 0.01 0.02 0.03	.5000 .5040 .5080 .5120	.5000 .4960 .4920 .4880	.0000 .0040 .0080 .0120	Mean z
0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34	.5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 .6179 .6217 .6255 .6293 .6331	.4168 .4129 .4090 .4052 .4013 .3974 .3936 .3859 .3859 .3859 .3821 .3783 .3745 .3707 .3669	.0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 .1179 .1217 .1255 .1293 .1331	Mean z

UNIT NORMAL TABLE: GUIDELINES

- Body = Larger part of the distribution
- Tail = Smaller part of the distribution
- Distribution is symmetrical => Proportions to right of mean are symmetrical to (read as "the same as") those on the left side of the mean
- \succ Proportions are always positive, even when *z*-scores are negative
- Identify proportions that correspond to z-scores or z-scores that correspond to proportions

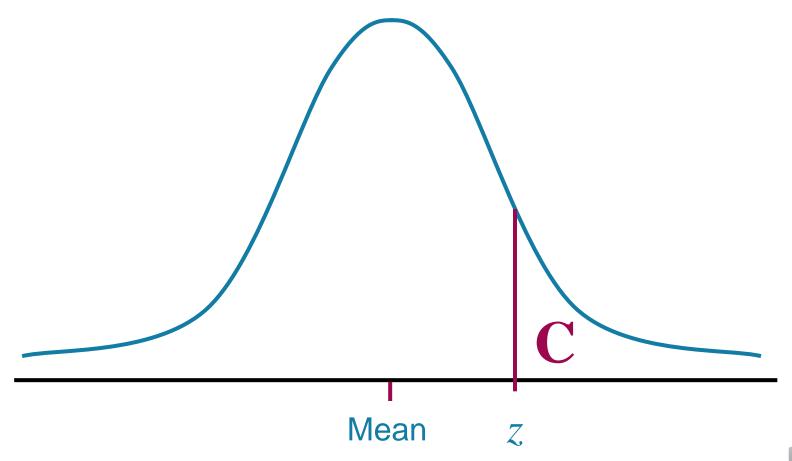
UNIT NORMAL TABLE: COLUMN SELECTION

Proportion in Body = Column B



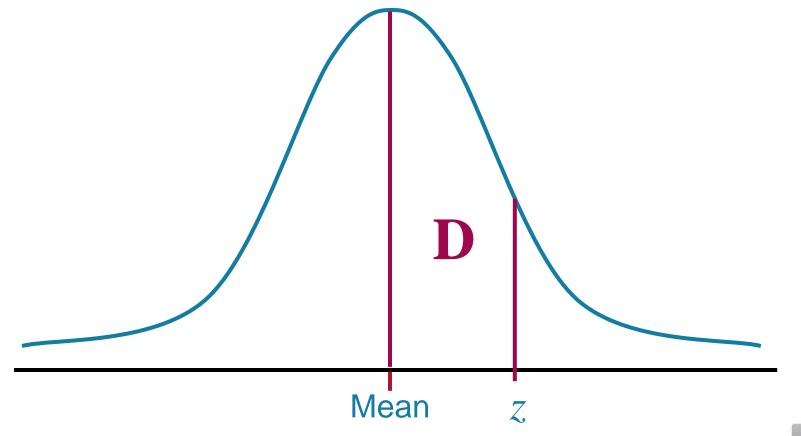
UNIT NORMAL TABLE: COLUMN SELECTION

Proportion in Tail = Column C



UNIT NORMAL TABLE: COLUMN SELECTION

 \succ Proportion between Mean & z = Column D

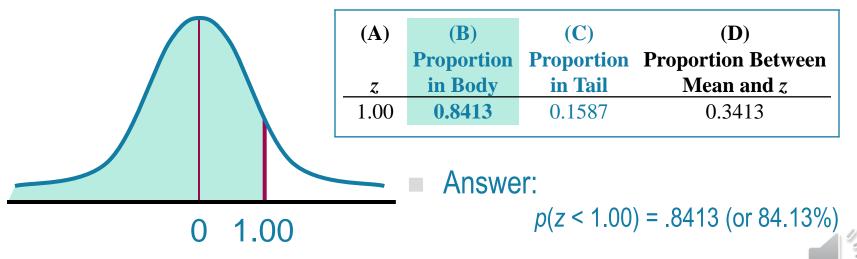


PROBABILITIES, PROPORTIONS, Z

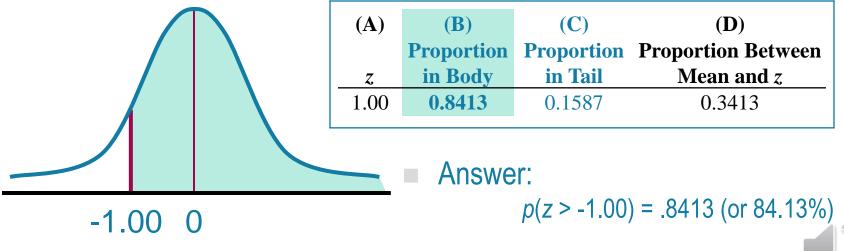
Unit Normal Table

- Relationships between *z*-score locations and proportions in a normal distribution
- ✤ If proportion is known, use table to identify z-score
- Probability = Proportion

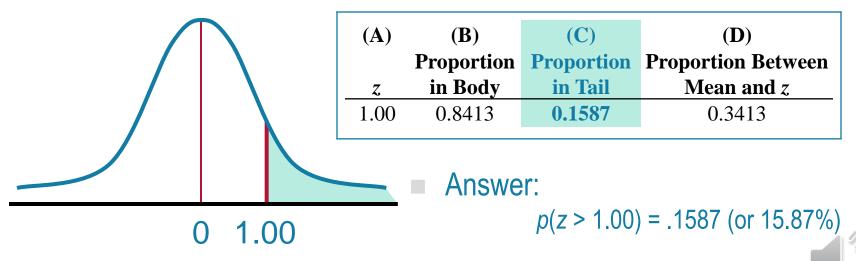
- Column B
 - \circ What proportion of normal distribution corresponds to *z*-scores < *z* = 1.00?
 - \circ What is the probability of selecting a *z*-score less than *z* = 1.00?



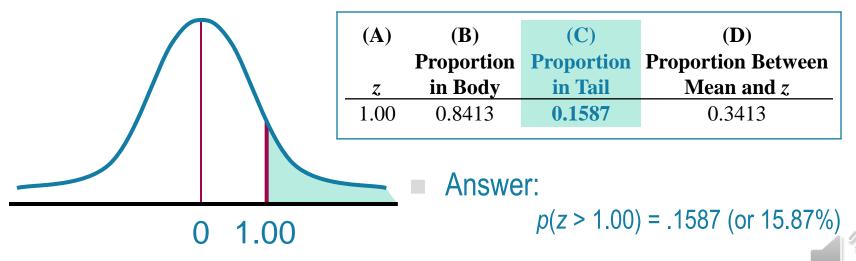
- Column B
 - \circ What proportion of a normal distribution corresponds to *z*-scores > *z* = -1.00?
 - \circ What is the probability of selecting a *z*-score greater than *z* = -1.00?



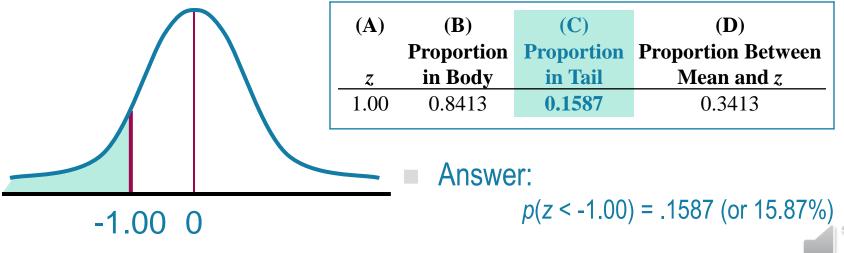
- Column C
 - \circ What proportion of a normal distribution corresponds to *z*-scores > *z* = 1.00?
 - \circ What is the probability of selecting a *z*-score value greater than *z* = 1.00?



- Column C
 - \circ What proportion of a normal distribution corresponds to *z*-scores > *z* = 1.00?
 - \circ What is the probability of selecting a *z*-score value greater than *z* = 1.00?

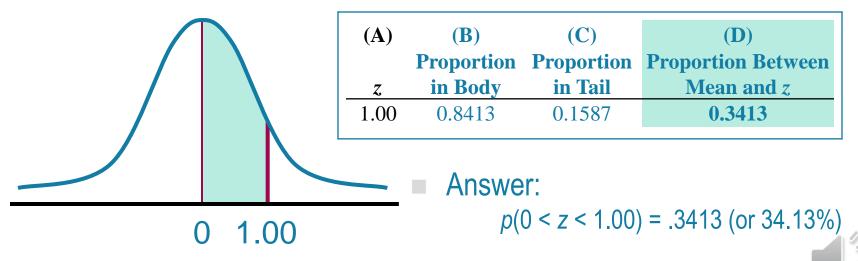


- Column C
 - \circ What proportion of a normal distribution corresponds to *z*-scores < *z* = -1.00?
 - \circ What is the probability of selecting a *z*-score value less than *z* = -1.00?



➤ Example:

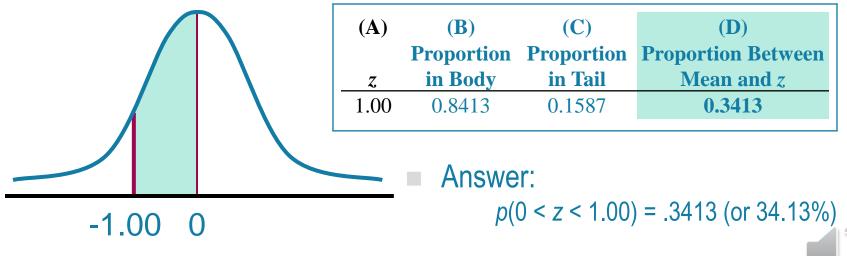
- Column D
 - What proportion of normal distribution corresponds to positive *z*-scores < z = 1.00?
 - \circ What is the probability of selecting a positive *z*-score less than *z* = 1.00?



FIND PROPORTION/PROBABILITY

➤ Example:

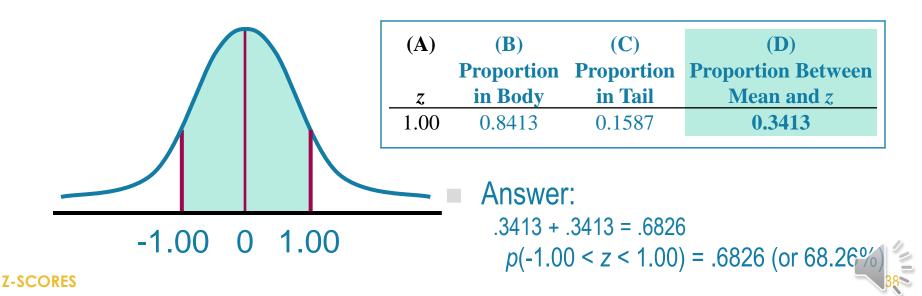
- Column D
 - What proportion of a normal distribution corresponds to negative *z*-scores > z = -1.00?
 - \circ What is the probability of selecting a negative *z*-score greater than *z* = -1.00?



FIND PROPORTION/PROBABILITY

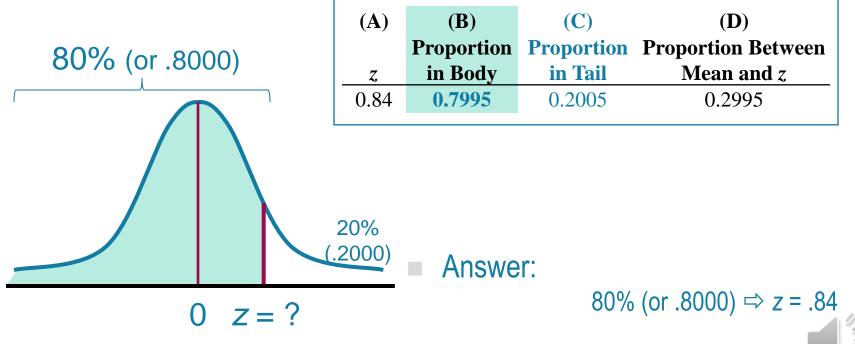
> Example:

- Column D
 - What proportion of a normal distribution corresponds to *z*-scores within 1 standard deviation of the mean?
 - What is the probability of selecting a *z*-score greater than z = -1.00 and less than z = 1.00?



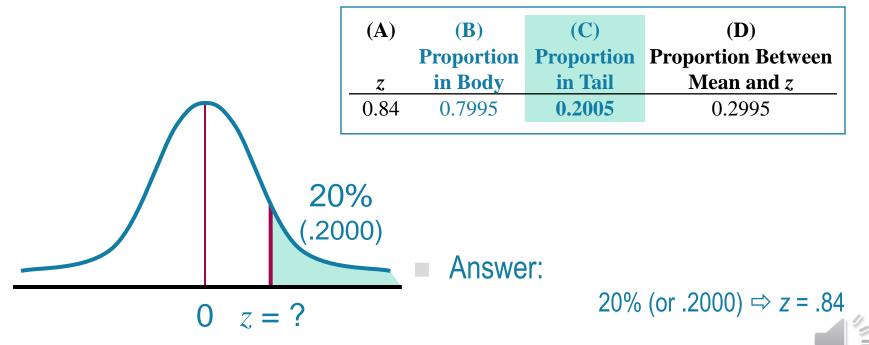
FIND Z-SCORE

- > Example:
 - Column B
 - \circ What *z*-score separates the bottom 80% from the remainder of the distribution?



FIND Z-SCORE

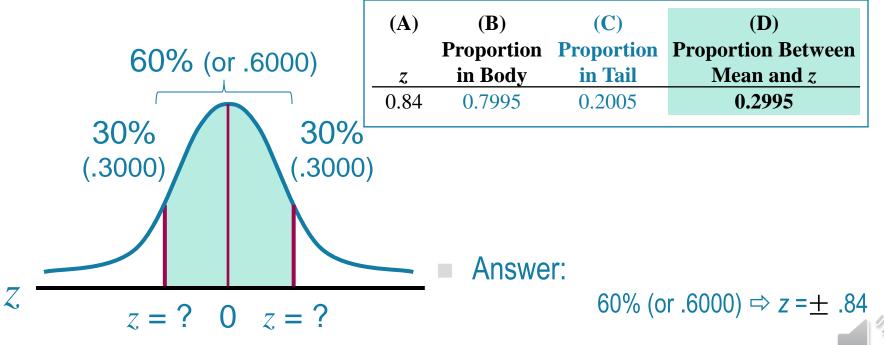
- ➤ Example:
 - Column C
 - $_{\odot}$ What z-score separates the top 20% from the remainder of the distribution?



FIND Z-SCORE

➤ Example:

- Column D
 - \circ What *z*-score separates the middle 60% from the remainder of the distribution?



Steps

- Convert X to z-Score
- Use Unit Normal Table to convert *z*-score to corresponding percentage/proportion

> Example

- \clubsuit Assume a normal distribution with μ = 100 and σ = 15
- What is the probability of randomly selecting an individual with an IQ score less than 130?

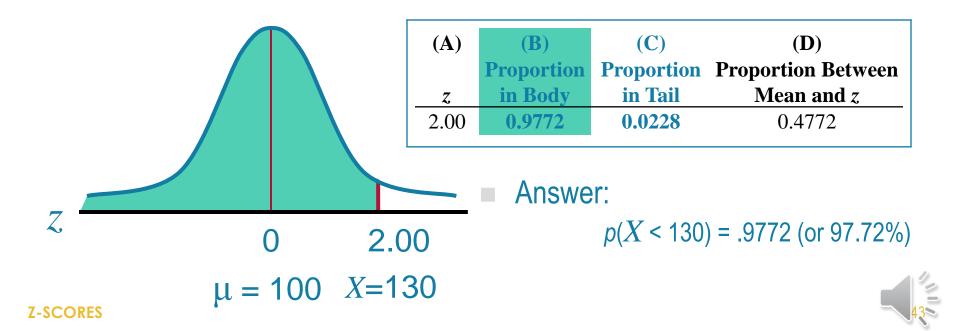
$$p(X < 130) = ?$$

✤ Step 1: Convert X to z-Score

$$z = \frac{X - \mu}{\sigma} = \frac{130 - 100}{15} = \frac{30}{15} = 2.00$$

- Example (continued)
 - Step 2: Use Unit Normal Table to convert *z*-score to corresponding percentage/proportion

z = 2.00



➢ Example

- Assume a normal distribution with µ = 58 and σ = 10 for average speed of cars on a section of interstate highway
- ✤ What proportion of cars traveled between 55 and 65 miles per hour?

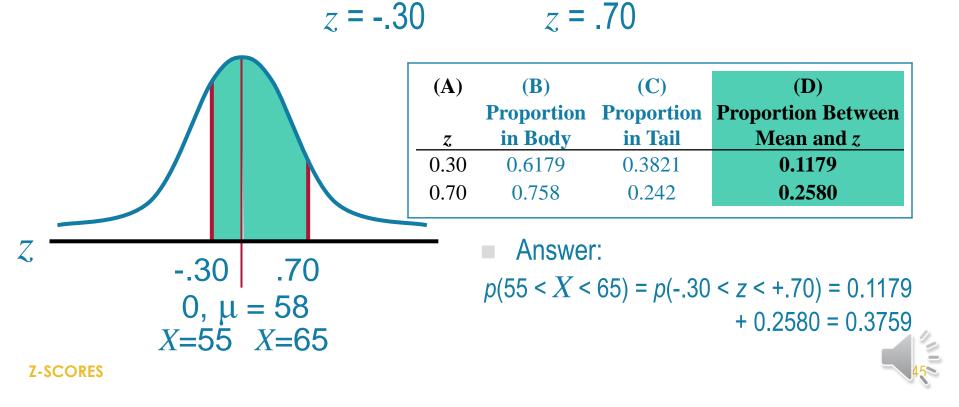
p(55 < X < 65) = ?

Step 1: Convert X values to z-Scores

$$z = \frac{X - \mu}{\sigma} = \frac{55 - 58}{10} = \frac{-3}{10} = -.30$$

$$z = \frac{X - \mu}{\sigma} = \frac{65 - 58}{10} = \frac{7}{10} = .70$$

- Example (continued)
 - Step 2: Use Unit Normal Table to convert *z*-scores to corresponding proportions



➢ Example

- Assume a normal distribution with µ = 58 and σ = 10 for average speed of cars on a section of interstate highway
- What proportion of cars traveled between 65 and 75 miles per hour?

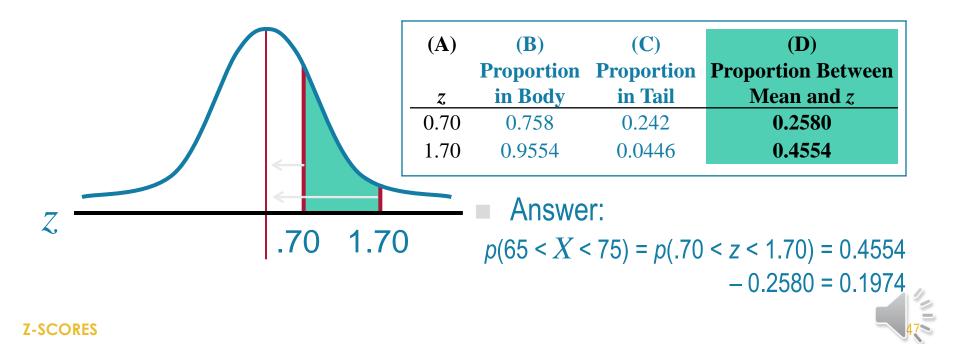
p(65 < *X* < 75) = ?

Step 1: Convert X values to z-Scores

$$z = \frac{X - \mu}{\sigma} = \frac{65 - 58}{10} = \frac{7}{10} = .70 \qquad z = \frac{X - \mu}{\sigma} = \frac{75 - 58}{10} = \frac{17}{10} = 1.70$$

- Example (continued)
 - Step 2: Use Unit Normal Table to convert *z*-scores to corresponding proportions

z = .70 *z* = 1.70



z-scores for distributions of sample means

DISTRIBUTION OF SAMPLE MEANS

Z-SCORES

Use of Distribution of Sample Means

- Identify probability associated with a sample
- Distribution = all possible M_s
- Proportions = Probabilities

➢ Example

✤ Population of SAT scores forms normal distribution with μ = 500 and σ = 100. In a sample of *n* = 25 students, what is the probability that the sample mean will be greater than *M* = 540?

$$p(M > 540) = ?$$

- Central Limit Theorem describes the distribution
 - $\,\circ\,$ Distribution is normal because population of scores is normal
 - $_{\odot}$ Distribution mean is 500 because population mean is 500
 - \circ For *n* = 25, standard error of distribution is σ_M = 20

Example (continued)

p(M > 540) = ?

Step 1: Calculate standard error of the distribution

$$\sigma_{M} = \frac{\sigma}{\sqrt{n}} = \frac{100}{\sqrt{25}} = \frac{100}{5} = 20$$

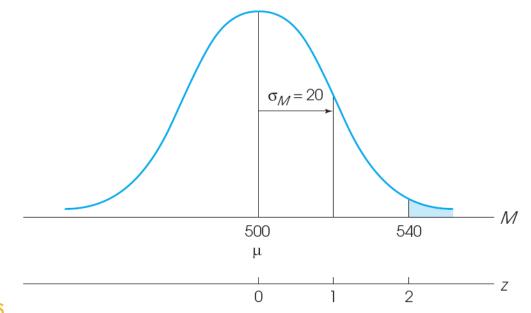
Step 2: Calculate corresponding *z*-score

$$z = \frac{(M - \mu)}{\sigma_M} = \frac{(540 - 500)}{20} = \frac{40}{20} = 2$$

Example (continued)

p(M > 540) = ?

 Step 3: Unit normal table to find correct value of p corresponding to shaded area for z



p(M > 540) = .0228

- > Where a sample is located relative to all other possible samples
- Formula

$$z = \frac{(M - \mu)}{\sigma_M}$$

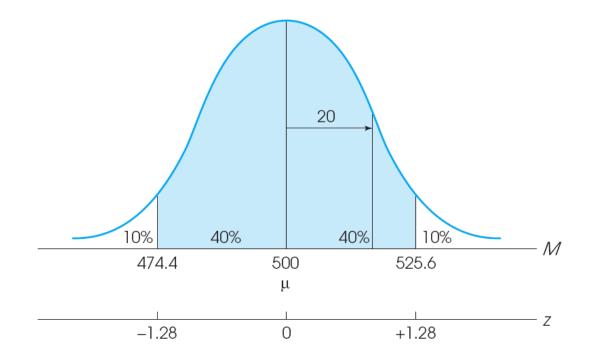
- > Applications
 - Probabilities associated with specific means
 - Predict kinds of samples obtainable from a population

➢ Example

- Predict kinds of samples obtainable from a population
- ✤ The distribution of SAT scores is normally distributed with a mean of μ = 500 and a standard deviation of σ = 100. Determine what kind of sample mean is likely to be obtained as the average SAT score for a random sample of *n* = 25 students 80% of the time.

Example (continued)

✤ Determine what kind of sample mean is likely to be obtained as the average SAT score for a random sample of n = 25 students 80% of the time.



- Example (continued)
 - ✤ Determine what kind of sample mean is likely to be obtained as the average SAT score for a random sample of n = 25 students 80% of the time.

○ *z* = -1.28 and 1.28

○ Last Step: Calculate mean values

 $M = \mu + z\sigma_M = 500 + (-1.28 \times 20) = 500 - 25.6 = 474.4$

 $M = \mu + z\sigma_M = 500 + (1.28 \times 20) = 500 + 25.6 = 525.6$

 $\odot~80\%$ of sample means fall between 474.4 and 525.6

