z-SCORES

Frances Chumney, PhD

CONTENT OUTLINE

> Overview of z-Scores
> Probability \& Normal Distribution
> Distribution of Sample Means

OVERVIEW OF Z-SCORES

OVERVIEW OF z-SCORES

> Student A earned a score of 76 on an exam

* How many points were possible?
- 76 out of 80 ? Not bad!
- 76 out of 100 ? Not so great!
* How does a score of 76 compare to other students?
- 76 the lowest score in the class?
- Anyone earn a score higher than 76 ?

OVERVIEW OF z-SCORES

BZ-Score

standardized value that specifies the exact location of

 an X value within a distribution by describing its distance from the mean in terms of standard deviation units> Standard Deviation Unit

* Standardized value
* 1 SD unit = value of 1 SD before standardization

OVERVIEW OF z-SCORES

SCORE LOCATION

$>z$-Scores describe the exact location of a score within a distribution

* Sign: Whether score is above (+) or below (-) the mean
* Number: Distance between score and mean in standard deviation units
> Example

$$
\therefore z=+1.00
$$

- Sign: positive (+) so score is above the mean
- Number: 1.00 SD units from the mean

SCORE LOCATION

$>$ Example

$$
\otimes z=-.50
$$

- Sign: negative (-) so score is below the mean
- Number: . 50 SD units from the mean

formula: RAW SCORE \rightarrow Z-SCORE

> Transform raw score (X value) to z-Score

$$
z=\left(\frac{X-\mu}{\sigma}\right)=\left(\frac{X-M}{s}\right)
$$

* Numerator = Deviation Score
* Denominator = Standard Deviation

formula: RAW SCORE \rightarrow Z-SCORE

> Example

* Population A has $\mu=5$ and $\sigma=1$
* Find z-Score for $X=3$
$\% z=(3-5) / 1=-2 / 1=-2$
$z=\left(\frac{X-\mu}{\sigma}\right)$

formula RAW SCORE \rightarrow Z-SCORE

> Example

* Sample B has $M=5$ and $s=1$
* Find z-Score for $X=5.5$
$\% z=(5.5-5) / 1=.5 / 1=+.5$

$$
z=\left(\frac{X-M}{s}\right)
$$

formula :RAW SCORE \rightarrow Z-SCORE

> Transform z-Score to X value (raw score)

$$
X=\mu+z \sigma=M+z s
$$

* 4 pieces of information:
- $X=$ raw score
- μ or $M=$ population/sample mean

○ $z=z$-Score

- σ or $s=$ population/sample standard deviation

formula RAW SCORE \rightarrow Z-SCORE

> Example

* Person A from Sample Y has a z-Score of -.75
* $\mu=10, \sigma=2$
* Find X for z-Score $=-.75$

$$
X=\mu+z \sigma=M+z s
$$

- $X=10+(-.75)(2)=8.5$

RELATIONSHIPS

> z-Scores establish relationships between score, mean, standard deviation

* Example
- Population: $\mu=65$ and $X=59$ corresponds to $z=-2.00$
- Subtract 65 from 59 and find deviation score of six points corresponds to z value of -2.00
- $(\mathrm{X}-\mu) / z=\sigma$
* Example
- Population: $\sigma=4$ and $X=33$ corresponds to $z=+1.50$
- Multiply σ by z to find deviation score (4 * $1.5=6$)
\circ Add/Subtract deviation score from X to find $\mu(33-6=27)$

DISTRIBUTION TRANSFORMATIONS

> Standardized Distribution
distribution composed of scores that have been transformed to create predetermined values for μ and σ; distributions used to make dissimilar distributions comparable
> Properties/Characteristics

* Same shape as original distribution - scores are renamed, but location in distribution remains same
* Mean will always equal zero (0)
* Standard deviation will always equal one (1)

DISTRIBUTION TRANSFORMATIONS

> How-To

* Transform all X values into z-Scores $\Rightarrow z$-Score Distribution
$>$ Advantage
* Possible to compare scores or individuals from different distributions \Rightarrow Results more generalizable
$\circ z$-Score distributions have equal means (0) and standard deviations (1)

STANDARDIZED DISTRIBUTIONS

$>z$-Score distributions include positive and negative numbers
> Standardize to distribution with predetermined μ and σ to avoid negative values
> Procedure

* Transform raw scores to z-scores
* Transform z-scores into new X values with desired μ and σ values

STANDARDIZED DISTRIBUTIONS

> Example

* Population distribution with $\mu=57$ and $\sigma=14$
* Transform distribution to have $\mu=50$ and $\sigma=10$
* Calculate new X values for raw scores of $X=64$ and $X=43$
* Step 1 (of 2)
- Transform raw scores to z-scores
- $z=(X-\mu) / \sigma$

$$
\checkmark z=(64-57) / 14=(7 / 14)=.50
$$

$$
\checkmark z=(43-57) / 14=(-14 / 14)=-1.0
$$

STANDARDIZED DISTRIBUTIONS

> Example (continued)

* Step 2 (of 2)
- Transform to new X values
- $z=.50$ corresponds to a score $1 / 2$ of a standard deviation above the mean
- In new distribution, $z=.50$ corresponds to score 5 points above mean $(X=55)$
- In new distribution, $z=-1.00$ corresponds to score 10 points below mean $(X=40)$
using the unit normal table to find proportions PROBABILITY \& NORMAL
DISTRIBUTION

PROBABILITY \& NORMAL DISTRIBUTION

PROBABILITY \& NORMAL DISTRIBUTION

> Example
. $p(X>80)=$?

- Translate into a proportion question: Out of all possible adult heights, what proportion consists of values greater than 80 "?
- The set of "all possible adult heights" is the population distribution
- We are interested in all heights greater than 80 ", so we shade in the area of the graph to the right of where 80 " falls on the distribution

PROBABILITY \& NORMAL DISTRIBUTION

> Example (continued)

* Transform $X=80$ to a z-score

$$
z=(X-\mu) / \sigma=(80-68) / 6=12 / 6=2.00
$$

* Express the proportion we are trying to find in terms of the z-score: $p(z$ $>2.00)=$?
* By Figure 6.4, $p(X>80)=p(z>+2.00)=2.28 \%$

UNIT NORMAL TABLE

UNIT NORMAL TABLE

UNIT NORMAL TABLE: GUIDELINES

> Body = Larger part of the distribution
> Tail = Smaller part of the distribution
$>$ Distribution is symmetrical \Rightarrow Proportions to right of mean are symmetrical to (read as "the same as") those on the left side of the mean
> Proportions are always positive, even when z-scores are negative
$>$ Identify proportions that correspond to z-scores or z-scores that correspond to proportions

UNIT NORMAL TABLE: COLUMN SELECTION

$>$ Proportion in Body $=$ Column B

UNIT NORMAL TABLE: COLUMN SELECTION

$>$ Proportion in Tail $=$ Column C

UNIT NORMAL TABLE: COLUMN SELECTION

> Proportion between Mean \& $z=$ Column D

PROBABILITIES, PROPORTIONS, Z

> Unit Normal Table

* Relationships between z-score locations and proportions in a normal distribution
* If proportion is known, use table to identify z-score
* Probability = Proportion

FIND PROPORTION/PROBABILITY

> Example:

* Column B
- What proportion of normal distribution corresponds to z-scores $<z=1.00$?
- What is the probability of selecting a z-score less than $z=1.00$?

		(A)	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z
		1.00	0.8413	0.1587	0.3413
01.00				$p(z<1.00)=.8413$ (or 84.13\%)	

FIND PROPORTION/PROBABILITY

> Example:

* Column B
- What proportion of a normal distribution corresponds to z-scores $>z=-1.00$?
- What is the probability of selecting a z-score greater than $z=-1.00$?

(A)	(B) Proportion	(C) Proportion	(D) in Body
1.00	$\mathbf{0 . 8 4 1 3}$	0.1587	0.3413

- Answer:

$$
p(z>-1.00)=.8413 \text { (or } 84.13 \%)
$$

FIND PROPORTION/PROBABILITY

> Example:

* Column C
- What proportion of a normal distribution corresponds to z-scores $>z=1.00$?
- What is the probability of selecting a z-score value greater than $z=1.00$?

FIND PROPORTION/PROBABILITY

> Example:

* Column C
- What proportion of a normal distribution corresponds to z-scores $>z=1.00$?
- What is the probability of selecting a z-score value greater than $z=1.00$?

FIND PROPORTION/PROBABILITY

> Example:

* Column C
- What proportion of a normal distribution corresponds to z-scores $<z=-1.00$?
- What is the probability of selecting a z-score value less than $z=-1.00$?

FIND PROPORTION/PROBABILITY

> Example:

* Column D
- What proportion of normal distribution corresponds to positive z-scores $<z=1.00$?
- What is the probability of selecting a positive z-score less than $z=1.00$?

FIND PROPORTION/PROBABILITY

> Example:

* Column D
- What proportion of a normal distribution corresponds to negative z-scores $>z=-1.00$?
- What is the probability of selecting a negative z-score greater than $z=-1.00$?

FIND PROPORTION/PROBABILITY

> Example:

* Column D
- What proportion of a normal distribution corresponds to z-scores within 1 standard deviation of the mean?
- What is the probability of selecting a z-score greater than $z=-1.00$ and less than

$$
z=1.00 ?
$$

.3413+. 3413 =.6826
.3413+. 3413 =.6826
p(-1.00<z< 1.00) = . }6826\mathrm{ (or 68.26%)",
p(-1.00<z< 1.00) = . }6826\mathrm{ (or 68.26%)",

FIND Z-SCORE

> Example:

* Column B
- What z-score separates the bottom 80% from the remainder of the distribution?

FIND Z-SCORE

> Example:

* Column C
- What z-score separates the top 20% from the remainder of the distribution?

FIND Z-SCORE

> Example:

* Column D
- What z-score separates the middle 60% from the remainder of the distribution?

PROPORTION/PROBABILITY FOR X

$>$ Steps

* Convert X to z-Score
* Use Unit Normal Table to convert z-score to corresponding percentage/proportion
> Example
* Assume a normal distribution with $\mu=100$ and $\sigma=15$
*What is the probability of randomly selecting an individual with an IQ score less than 130 ?

$$
p(X<130)=?
$$

* Step 1: Convert X to z-Score

$$
z=\frac{X-\mu}{\sigma}=\frac{130-100}{15}=\frac{30}{15}=2.00
$$

PROPORTION/PROBABILITY FOR X

> Example (continued)

* Step 2: Use Unit Normal Table to convert z-score to corresponding percentage/proportion

$$
z=2.00
$$

(A)	(B) Proportion in Body	(C) Proportion in Tail	(D) Proportion Between Mean and z
2.00	0.9772	$\mathbf{0 . 0 2 2 8}$	0.4772

Answer:

$$
p(X<130)=.9772 \text { (or } 97.72 \%)
$$

$$
\mu=100 \quad X=130
$$

> Example

* Assume a normal distribution with $\mu=58$ and $\sigma=10$ for average speed of cars on a section of interstate highway
*What proportion of cars traveled between 55 and 65 miles per hour?

$$
p(55<X<65)=?
$$

* Step 1: Convert X values to z-Scores

$$
\begin{aligned}
& z=\frac{X-\mu}{\sigma}=\frac{55-58}{10}=\frac{-3}{10}=-.30 \\
& z=\frac{X-\mu}{\sigma}=\frac{65-58}{10}=\frac{7}{10}=.70
\end{aligned}
$$

PROPORTION/PROBABILITY FOR X

> Example (continued)

* Step 2: Use Unit Normal Table to convert z-scores to corresponding proportions

$$
z=-.30 \quad z=.70
$$

> Example

* Assume a normal distribution with $\mu=58$ and $\sigma=10$ for average speed of cars on a section of interstate highway
*What proportion of cars traveled between 65 and 75 miles per hour?

$$
p(65<X<75)=?
$$

* Step 1: Convert X values to z-Scores

$$
z=\frac{X-\mu}{\sigma}=\frac{65-58}{10}=\frac{7}{10}=.70 \quad z=\frac{X-\mu}{\sigma}=\frac{75-58}{10}=\frac{17}{10}=1.70
$$

PROPORTION/PROBABILITY FOR X

> Example (continued)

* Step 2: Use Unit Normal Table to convert z-scores to corresponding proportions

$$
z=.70 \quad z=1.70
$$

z-scores for dístríbutions of sample means

DISTRIBUTION OF SAMPLE MEANS

DISTRIBUTION OF SAMPLE MEANS

> Use of Distribution of Sample Means

* Identify probability associated with a sample
* Distribution = all possible $M_{\text {s }}$
* Proportions = Probabilities

DISTRIBUTION OF SAMPLE MEANS

> Example

* Population of SAT scores forms normal distribution with $\mu=500$ and $\sigma=100$. In a sample of $n=25$ students, what is the probability that the sample mean will be greater than $M=540$?

$$
p(M>540)=?
$$

* Central Limit Theorem describes the distribution
- Distribution is normal because population of scores is normal
- Distribution mean is 500 because population mean is 500
- For $n=25$, standard error of distribution is $\sigma_{M}=20$

DISTRIBUTION OF SAMPLE MEANS

$>$ Example (continued)

$$
p(M>540)=?
$$

* Step 1: Calculate standard error of the distribution

$$
\sigma M=\frac{\sigma}{\sqrt{n}}=\frac{100}{\sqrt{25}}=\frac{100}{5}=20
$$

* Step 2: Calculate corresponding z-score

$$
z=\frac{(M-\mu)}{\sigma M}=\frac{(540-500)}{20}=\frac{40}{20}=2
$$

DISTRIBUTION OF SAMPLE MEANS

> Example (continued)

$$
p(M>540)=?
$$

* Step 3: Unit normal table to find correct value of p corresponding to shaded area for z

$$
p(M>540)=.0228
$$

Z-SCORE FOR SAMPLE MEANS

> Where a sample is located relative to all other possible samples
> Formula

$$
z=\frac{(M-\mu)}{\sigma_{M}}
$$

> Applications

* Probabilities associated with specific means
* Predict kinds of samples obtainable from a population

Z-SCORE FOR SAMPLE MEANS

> Example

* Predict kinds of samples obtainable from a population
* The distribution of SAT scores is normally distributed with a mean of $\mu=500$ and a standard deviation of $\sigma=100$. Determine what kind of sample mean is likely to be obtained as the average SAT score for a random sample of $n=$ 25 students 80% of the time.

Z-SCORE FOR SAMPLE MEANS

> Example (continued)

* Determine what kind of sample mean is likely to be obtained as the average SAT score for a random sample of $n=25$ students 80% of the time.

Z-SCORE FOR SAMPLE MEANS

> Example (continued)

* Determine what kind of sample mean is likely to be obtained as the average SAT score for a random sample of $n=25$ students 80% of the time.
$\circ z=-1.28$ and 1.28
- Last Step: Calculate mean values

$$
\begin{gathered}
M=\mu+z \sigma M=500+(-1.28 \times 20)=500-25.6=474.4 \\
M=\mu+z \sigma M=500+(1.28 \times 20)=500+25.6=525.6
\end{gathered}
$$

- 80% of sample means fall between 474.4 and 525.6

